Unitary Matrix Integrals, Primitive Factorizations, and Jucys-Murphy Elements
نویسندگان
چکیده
A factorization of a permutation into transpositions is called “primitive” if its factors are weakly ordered. We discuss the problem of enumerating primitive factorizations of permutations, and its place in the hierarchy of previously studied factorization problems. Several formulas enumerating minimal primitive and possibly non-minimal primitive factorizations are presented, and interesting connections with Jucys-Murphy elements, symmetric group characters, and matrix models are described. Résumé. Une factorisation en transpositions d’une permutation est dite “primitive” si ses facteurs sont ordonnés. Nous discutons du problème de l’énumération des factorisations primitives de permutations, et de sa place dans la hiérarchie des problèmes de factorisation précédemment étudiés. Nous présentons plusieurs formules énumérant certaines classes de factorisations primitives, et nous soulignons des connexions intéressantes avec les éléments JucysMurphy, les caractéres des groupes symétriques, et les modèles de matrices.
منابع مشابه
Symmetric Polynomials in Jucys-Murphy Elements and the Weingarten Function
We determine the coefficients of the classes of highest weight in the conjugacy class expansion of the monomial symmetric polynomials evaluated at the Jucys-Murphy elements. We apply our result, along with other properties of Jucys-Murphy elements, to give streamlined derivations of the first-order asymptotics and character expansion of the Weingarten function for the unitary group.
متن کاملComplete Symmetric Polynomials in Jucys-murphy Elements and the Weingarten Function
A connection is made between complete homogeneous symmetric polynomials in Jucys-Murphy elements and the unitary Weingarten function from random matrix theory. In particular we show that hr(J1,...,Jn), the complete homogeneous symmetric polynomial of degree r in the JM elements, coincides with the rth term in the asymptotic expansion of the Weingarten function. We use this connection to determi...
متن کاملOn complete functions in Jucys-Murphy elements
The problem of computing the class expansion of some symmetric functions evaluated in Jucys-Murphy elements appears in different contexts, for instance in the computation of matrix integrals. Recently, M. Lassalle gave a unified algebraic method to obtain some induction relations on the coefficients in this kind of expansion. In this paper, we give a simple purely combinatorial proof of his res...
متن کاملJucys–murphy Elements and Weingarten Matrices
We provide a compact proof of the recent formula of Collins and Matsumoto for the Weingarten matrix of the orthogonal group using Jucys–Murphy elements.
متن کاملÉléments de Jucys-Murphy généralisés
We define Jucys-Murphy elements for the finite Coxeter groups which do not contain D4 as a parabolic subgroup. We prove that these elements share some previously established properties with the original Jucys-Murphy elements of the symmetric group. This enables one to envisage an approach to the representation theory of these groups similar to the Vershik-Okounkov reconstruction for the symmetr...
متن کامل